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ABSTRACT 

The solution that is developed herein can be used  to compute thermal 
stresses and displacements  in the moderately thick walls of appreciably 
curved ogival radome shells whose material properties  change with heat 
intensity along  the  span and  through the wall.    No restriction is placed 
on temperature dependent variations of the  thermal strain expression. 

A restriction imposed on the theory is  that the wall material must 
not be overstrained.    Overstrain is any amoun    beyond  the elastic  limit 
in excess of allowable strain that accompanies a maximum stress equal to 
the usable strength of the material as determined for  the worst heating 
condition in a given application. 

Three examples of the computerized results are presented.    The first 
example deals with a 28.3" x 6.75" bicentric-ogive radome;  the second, 
with a thick-walled hemispherical radome; and the third, with a thin-walled 
hemisphere.    In these calculations,   linear spanwise  temperature distributions 
are  used that were obtained from experimental and heat-transfer analyses 
of a radome tested in a wind tunnel.    Through the wall,  over specified 
layers,   the thermal-strain function is approximated as being linear with 
temperature.    However,  the temperature varies as a third-order nonlinear 
function through the thickness of the wall as  found for the test radome. 
It appears that errors due  to the approximation amount to less than four 
percent in general. 

It was found that stresses  in the bicentric-ogive  radome were within 
safe  limits in regard to strengths of the wall material.    Good agreement 
was obtained between computed and experimentally determined stresses at 
the  one point,  1.75 inches behind the tip, where strains were measured. 
Analyzed for comparison,   the thick-walled hemispherical radome was over- 
stressed, but the thin-walled hemisphere was sufficiently strong. 

It is also concluded that additional information is needed on tem- 
perature distributions,  nosecap behavior,  thermal stress maxima,  and  the 
effects of radome-missile joints. 
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I.     INTRODUCTION 

In his  fam )U3  treatise on elasticity, A. E. H. Love [l]    discussed  the 
analysis of appreciably curved and moderately thick-walled shells.    He  then 
proceeded with examples   in which he made certain approximations that  let him 
neglect terms found  to be unimportant within the  range of consideration.    Many 
authors thereafter adopted Love's approximations and developed the modern 
thin-shell theory,  [2],  [3],  [4],  and [s],  for example. 

Today's requirements  for heat-resistant structures of comparatively thick- 
walled shell    construction have  led to further investigation of  the problem. 
McDowell and Sternberg [6] examined spherical shells, and several wr't.^s 
studi(d cylindrical  shi 11s:    Tsao [?],  Lee [lO], Hoff and Madsen [U,, 
Rivello [12]  and [16],  and Bijlaard, Dohrmann and Duke [18].    Conical shells 
were analyzed by Lu and Chang [14] and Weiss [l?].    Buckling effects, more- 
over, were  included  in [ll]  and [14],  and sandwich constructions were 
discussed  in [l2]  and  [l6]. 

Thermal stresses  in beams v^re computed by Barrekette [8],  and radome 
materials for high temperature usage were compared by Weckesser, Hallendorff 
and Suess [15],    The  stiffness-matrix method was employed by Dailey [13]  to 
obtain numerical solutions. 

In [9], F. Lane derived  solutions for shells of revolution,  and D.  E. 
Magnus and D.  Elsen presented digital-computer programs  for numerical 
evaluations.    Lane used varlatlonal calculus  to minimize  the strain energy 
of a shell to obtain his  results. 

Numerical and theoretical analyses developed in the ensuing text 
require  that the  radome wall material must not be overstrained.    Overstrain 
refers  to a strain that exceeds  the elastic  limit at a concurrent temperature. 
Reports [l9]  to [27],  inclusive, were prepared as part of the overall 
thermal-stress  investigation. 

Numerals  in brackets denote  references  listed at  the end of this report, 

MB 
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III.     NOMENCLATURE 

A.B.C 
D 
E 
F 
H 
I 

J,K 
L 
M 
N 
P 
Q 
R 
S 
T 
V 
W 
Y 
Z 

a,b 
c 
e 
f 
h 
i 
k 
l 

m,n 
P 
q 
r 
s 

u,w 
X 

y 
z 

0 
e 
6 
v 
a 
T: 

X: 

Constants of integration 
Wall stiffness  factor, D = Eh3/12(l-v3) 
Young's modulus of elasticity,  psi 
Force; Function; Fahrenheit 
Intercept height,   inches 
Wall moment of  inertia,  I = h3 /12 
Constants 
An operator 
Moment resultant,  ippi 
Normal-stress  resultant,  ppi 
Function 
Shear-stress resultant,  ppi 
Spatial  radius,   inches 
A series  or  its  sum 
Temperature,   0F 
Wall-slope change,  radians 
Function 
Variable 
Geometric  axis  of  radome 

Series coefficients 
Half thickness of wall (c=h/2),  inches 
Normal strain,   ipi 
Function 
Wall thickness,   inches 
Positive  integer;   1,2,3,... 
Constant 
Length, inches 
Positive integers; 1,2,3,... 
Function; Pressurp, psi 
Auxiliary shear function, ppi 
Planar radius, inches 
A series or its sum 
Displacement functions, inches 
Thickness variable ratio, x = y/c 
Thickness coordinate, inches 
Coordinate along geometric axis, inches 

Wall bending parameter, radians 
Normal strain, ipi 
Coordinate angle of rotation, degrees or radians 
Poisson's ratio 
Normal stress, psi 
Shear stress, psi 
Curvature change, radians per inch 
Coordinate angle of azimuth, degrees or radians 

The following symbols are used as subscripts: 

Anterior or outer surface of wall 
Base of radome at the body of a missile 
Central surface of wall 
General 
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l,m,n: 
o: 

p: 
1 

q: 
s : 
t: 
y: 

r.e.z: 

Indices 
Origin or initial value  (zero) 
Particular 
Referred to function q 
Secondary or inner surface of wall 
Thermal or temperature 
In the y direction 
Cylindrical-coordinate directions 
Spherical-coordinate directions 

IV.    THERMAL STRESS  EXPRESSIONS 

1.     RADOME WALL STRESSES 

When the radome mainbody is an ogival segment,  such as  the one  illustrated 
in Figure  la, meridian  (ax)  and hoop (OQ)  stresses can be determined with a 
computer program based on the  following equations. 

V aa " V        ae = Gb " at (1) 

In the  foregoing expressions, cr   represents a function having the  dimenf ons 
of stress   (psl) given by 

at = Eet/(l-v) (2) 

and a and a. were calculated from the equations written below. 

a 
a 

Dimensions h, H,  Rc and variables y,  r,  R are defined on Figure  la, which shows 
the wall profile of the radome.    Symbol "I" denotes moment of inertia per unit 
length of a section of the wall  (I = 1^/12).    And v is  Poisson's  ratio while 
normal stress   (N^) and moment   (M^)  resultants are described  in the next article 

R a,       vyH(a_-va. ) R^8      yH(a-va) 
c 1        ^      2      1 a    = -£■— -  (i\ 
R      "    (l-v3)rR      '        b        R (l-v2)rR ^' J 

I 
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Fig. lb    RADOME-WALL ELEMENT WITH STRESS RESULTANTS AND BENDING MOMENTS 
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2. STRESS AND MOMENT RESULTANTS 

Two normal stress resultants (^ and 1^) appear in equations (4). By 
definition, they are 

V V V       VNe + Nte (5) 

where all four of the right-hand terms are obtained from the  following integrals, 

+c 

N. = 
ra 
_JL 

+c 
Rae 

dy.    Nfl =  / -—dy 

-c 

(6) 

+c +c 

c rat r Rat (7) 

Furthermore,   the  shearing stress  resultant   (Figures  lb and  2) 

■c 

(8) 

is closely related to the first twOj equations (6), as discussed in Appendices 
A, C, D, Gf and References [24], [26], and [27]. 

Moments that bend the wall of the radome occur in equations (4) as Mj^ and 
^. They are defined to be 

Mi-W       ^sMe + Mte (9) 

where  the four right-hand terms are calculated with integrals  that are written 
below.     (Also,   see  Figure  lb). 
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M, 
ra 

ydy, 

-c 

Mr 

-c 

(10) 

+c 

rat 
Mt* = 7" ydy' 

-c 

M te 
Ra. 

ydy (ID 

The preceding functions are evaluated  from relationships  that are presented in 
the appendices and in References [19]  to [27], inclusive.    Outer surfac- tem- 
peratures are shown in Figure 3. 

3.      SOLUTIONS 

(a)    General Solutions - For numerical work,  it is  frequently expedient to 
restrict  the expansion interval of  infinite series  that are employed in general 
solutions.    This was done in the example of Part VI-1 wherein three intervals 
span the  length of the radome.     The nosecap lies within 0 ^ ^ ^ ^   « 64° 19'23": 
(Figure  2),  and  the mainbody (Figure  1)  is composed of two segments  (MB1 and 
MB2) whose defining intervals are 

"/.A IOT> 
640

19-23" = 1^ ^ ^= 73044l23 (for MB1) 

73044'23" = ^u   S ^ s ^    = 90c (for MB2) 

where 90°  coincides with the radome base at which point it  is attached to the 
cylindrical body of a missile. 

For general solutions,   infinite  series are of  the forms 

s     = 
m a    Yn, mn 

S    = m na    Y mn 
n-1 

(12) 

n=o n=o 

with numerical results discussed in the appendices, and the variable Y is shown 
below  for MB1 and MB2. 
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sin \|i - sin \j( 

sin \|r2- sin ^   ' n       *       T3 

sin \|i - sin ^4 

Y « -r—. -. r , ^^90° (14) 
sin i|4-  sin ^ ^ 

From both expressions  (13) and  (14), values are within -1 ^ Y £ +1 from left 
to right ends of each interval.    Subsequently (Appendix D),   it  is demonstrated 
that the general solution is 

N.     = cos ^   \B 
f   <*) Nfi    = Nw. + ^       )      KKW (15) \(ig T   y       ic m T ög        i^g      R /       m m T 

m=l m=l 

where the Bm  (m = 1,2,3,4) are  constants of integration determined by boundary 
conditions as explained in Appendix E. 

The  functions fm, Fm depend on sm,  Sm being computed with 

f (i)    ,  0 = s   , f  (*)    , /   - s    cos if m ^ m=l,2 m' mNT m»3,4        m T (16) 

F     (i^)     .   _ = k.S cos  i|i, F (^)    _ .   - k.S cos2^ - Sm sin if        (17) 
m    T m»l,2        im T m  T m-3,4 im T m 

wherein k.   represents 1^   in MB1 and 1^   in MB2 as shown below in equations  (18) 

u t  u i  
*     sin \|i2- sin ^   ' ^    sin if^- sin ^ 

(18) 

The bending moments are calculated from changes  in curvature of the wall 
of the radome with orthogonal components expressed by 

^      R    d^   ' Xe r K^J 

c c 

where V denotes change of slope of the  radome wall induced by thermoelastic 
effects.    The moments are 

11 
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M,» -D(Xt + VXg), Ms» -D(vxt +X9) (20) 

D  = EI/(l-v2)   = Eh3/12(l-v2) (21) 

and the curvature changes are calculated from the next two equations. 

^eg m m  T 

m=l 

r 
xtg = xeg + if mm (22) 

m=l 

The preceding  functions,   constants  Bm and B^,   and computation of series 
coefficients ainn ir. equations   (12) by means of recurrence  formulas are 
described  in greater detail in the  appendices and in Reference [26], 

(b)    Particular Solutions -  In general,  particular solutions cannot 
be obtained  in closed form to compute stress and moment  resultants  in the 
mainbody  (Figure   L).    It is demonstrated in Appendix D,  however,   that 
approximate formulas can be developed  that describe the desired functions 
within about one-half percent.    The  approximation functions are 

r Bs       R  (B7
+B8cos  ty) 

= ^+-R- + r    tan to 
c Y V 

qP. sin 
,     N.   = Q.cot  ill       (23) 

N ep 
R tL 

B.- -^- 
R 

cos   ty   - 
1 

CSC    l(l   + 

K cos i|/ 
c 

r tan f   , 
c T   I 

(B;+ BjCos  iji) 

Vn   =^- 

r ^       R (B;+ B^COS  t) V cos   A 
r    tan \l; 

c 
xe =     r 

X tp 
Ba       K 1 r R cos f 

cos ill + -—    csc0^ H r • 
r     1 r tan w 

c c        y 
(B.;+ Bg'  cos  ij;) 

(24) 

(25) 

(26) 

in which q   /is  an auxiliary shear  function used  to find  the   total  shear  (Q.) 
by means  off equation  (23).     Integration constants Bm and  B^ are calculated 
in AppendiW. D from  temperature  relationships,  and they are  fully developed 
in Reference [24]. 

J2 
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V.     THERMOELASTIC DISPLACEMENTS 

1.    WALL EXTENSION 

In Appendix F, the wall-extension component  (w) of displacement is 
developed as 

I 

w = w.sin \|i + w 
q      t 

(27) 

where w.   is a constant of  integration (equalling Wj   in MB1 and w«   in MB2), 
wa  is a function that depends on the auxiliary shear function (q), equations 
(SOO) and  (101), and wt depends on the temperature distribution as given by 
equations   (29),   (30),  and   (31). 

2.    RADIAL DISPLACEMENT 

After finding w from equation (27),  the radial component of displacement 
(u) is calculated with 

u = r esc 1^(11 -   -»Nl)/Eh - w cot ^ (28) 

where the coordinates are  showu in Figures  la and   lb, and  the other terms are 
as defined previously.    This relation for u is obtained  in Appendix F. 

VI.    EXPERIMENTAL DATA AND HEAT TRANSFER ANALYSES 

1.    TEMPERATURE DATA 

(a) Wall-Thickness  Distributions - Available  information on radome tem- 
perature distributions were analyzed and reported  in Reference [22].    Tem- 
perature distributions  that are shown in Figure 4 were developed in the 
referenced investigation together with References  [20]  and [2l]. 

(b) Spanwise Distributions - The spanwise temperature distributions found 
in Reference [22] along the outer, central, and  inner surfaces of the test 
radome are plotted in Figure  5.    They are based  on the general relationships 
developed  in Reference  [20], and the coefficients are empirical, 

(c) Temperature-Distribution Function - With but slight error,  it was 
found in Reference L22J   that the approximate temperature distribution through- 
out the wall of the radome was 

T = T f(x) 
a (29) 

13 
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DISTRIBUTIONS FOR 28.3-INCH x 6.7WNCH VON KARMAN TEST RADOME 
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where T " T(i|(,y)  is a separable function of \|i and x = y/c, with y being the 
wall thickness variable and \|i  the coordinate angle as  in Figure   la.    For 
thickness variation, we have 

f(x)  =   V^  fn\
n = 0.257 + 0.358 x + 0.305 x2 + 0.084 x3 (30) 

n=o 

in which numerical values of coefficients  (fn)  are stated in the expanded 
form on the  right. 

The exterior-surface temperature distribution is given by 

Ta = Ta(0 (31) 

which is  shown in Figure 3 for the bicentric-ogive radome of the  first example 
in Part VIII. 

2.     STRENGTH DATA 

(a) Strain Measurements - Strains were measured along the   inner surface 
of the wall at  1.75 inches  from the  tip of the radome emplced   in the wind 
tunnel  tesäts  reported in References [21] and [22].    No breakage was reported 
for test results used  in analysis. 

(b) Stress Results - Stresses were calculated  from the strain measurements. 
As a point of comparison,  an experimentally determined meridian stress of 
18,000 psi was found at the  inner wall surface at 1.75 inches   from the tip 
of  the  test   radome. 

VII.     NOSECAP AS  A SPHERICAL SEGMENT 

1.    WALL STRESSES 

Frequently,  a radome nosecap is  the spherical segment of a half-caliber 
ogive pictured by Figure 2.    In such cases,  formulas   (3)  reduce  to 

aa = Ro01/R, cb = Roa8/R (32) 

and the other relations are unchanged.    Radius RQ is  the  principal radius of 
curvature of the central surface, which is shown in Figure 2 also. 

16 
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2. STRESS AND MOMENT RESULTANTS 

The normal stress resultants (1^ and N2) that appear in equations (4) are 
given by 

where the right-hand terms are obtained from the following integrals. 

+c +c 
Ra f Rafi 

K' I   R^ dy. Ne =      R   dy (34) 

o Jo 

+c 

Ra 
Nt = Nt* = Nte = /   R- ^ (35> 

Also,  the wall bending moments  0^   and Hg)  that occur in equations   (4) 
are defined to be 

M^ M^ +MtJ ^= Me +Mt (36) 

where the right-hand terms are computed with the   integrals shown below. 

+c +c 

f   Ra. f RCTe 
M^ = j      ^ ydy, Ms =   |     Tr— ydy (37) 

-c 

+c 

Ra 
Mt = Mt^ = Mte = /   IT y** <38> 

-c 
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The preceding functions  are evaluated  from relationships   'chat are presented 
in the appendices, and outer surface temperatures are shown in Figure  3. 

3.    SOLUTIONS 

(a)    General Solutions 
Figure 2 as 

- For the nosecap, whose  interval is shown in 

01 O I Till 0 z ty £  \1(1= 64019,23 

the general solutions corresponding to series  (12)  are obtained with variable 
Y replaced by 1-cos \)i; e.g., 

CO 

I 
n=o 

s    =      )    b     (1-cos 4)   . S    =      \      nb     (1-cos ill) m /       mn r     ' m / mn (39) 

n=o 

and the normal stress resultants are given by the following two equations. 

N,     = cos  to 

4 

\      A s   , L mm 
m=l 

NQ    = N.     +  (1+cos  \b)    \     A S 
Gg        i|ig "'/mm 

(40) 

m=l 

The bending moments are  found with equations   (20)  using  the  following wall 
curvature changes. 

C2s_l     \     A, +Il±|o^ü   \   AIS 
ög R /mm \(fg og R /mm 

(41) 

m=l m=l 

Again,   the preceding  functions,  constants A. and A^,  and  computation of series- 
coefficients are  discussed further in the appendices. 

(b)     Particular Solutions  -  Particular solutions applicable  to the nosecap 
depend  on temperature  functions   (35)  and   (38)  that vary with cos  i|i  in the 
examples of Part VIII.    These solutions are written below in closed form. 

18 
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tP OP 
A cos \li, 

IP ^0p a-^cos * (42) 

They are equal  in pairs, and A0 and AQ are constants that are evaluated from 
temperature data in Part VI and in the appendices. 

4.     DISPLACEMENTS 

(a)    Wall Extension - For the nosecap of Figure 2, equation (27)  reduces  to 

w = wsin 4  -   (l+v)R Q,/Eh 
O T '      O     w 

(43) 

where QJ, is defined by integral   (8) and computed in Reference [27]. 

(b)  Radial Displacement - The radial component of displacement   (u)  is 
obtained from equations  (28) and  (43) as 

u = 
Eh 

(N8- v^) + (1 + v)N^    - wocos ■ii (44) 

where the coordinates are shown in Figure  2,  and the other terms are given in 
the  list of nomenclature.    The  foregoing relations for u and UJ are also 
developed in Appendix G. 

VIII.    NUMERICAL EXAMPLES 

1.    BICENTRIC-OGIVE RADOME 

(a)    Thermal Stresses - Based on stress equations presented in the preceding 
text and the appendices, a computer program was set up for stress analysis of 
the bicentric-ogive  radome described  in Reference [23J. 

The computed stresses were obtained for the temperature distribution given 
by equations(29)  and  (30) using  the outer-suriace straight-line spanwise 
temperature distribution (T ) shown in Figure 3 along the mainbody as written 
below. 

T    = 589 + 705  cos  * a T (45) 

Along the nosecap,   the temperatures were  represented by 

T    = 50 + 1269 cos  * 
a T (46) 
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which approximates the points plotted near the left side of Figure 3 between 
z = 28" and 32". 

Computerized thermal stresses are listed in Tables 1 and 2 and plotted 
on Figure 6, which follow immediately. 

2. RADOME BASE CONNECTIONS 

Four Ivinds  of attachment  of a radome base are  symbolically  illustrated 
in Figure 8.    A stiff connection is  indicated by 8a while 8b  is  flexible. 
The  attachments  represented by 8c and 8d are  intermediate between the  stiff 
and  flexible connections  diagrammed  in 8a and 8b. 

3. THICK-WALLED HEMISPHERICAL RADCME 

For purposes of comparison, a thick-walled (R0/h = 1.056) hemispherical 
radome was analyzed using the temperature functions given by equations (29) 
to (32), inclusive. Stress values from the computer program are reported 
in Tables 4 and 5 and plotted on Figure 9. Components of displacement are 
listed in Table 6 and shown on Figure 10, 

4. THIN-WALLED HEMISPHERICAL RADOME 

In the third example,   stresses were calculated for the thin-walled 
(R /h = 26.5) hemispherical radome sketched on Figure  11.    For comparison 
with examples one and two,   the same temperature distributions were used. 
They are defined by equations  (29)  to  (32),   inclusive. 

The thermal-stress values are presented  in Tables 7 and 8 and shown 
on Figure  11.     The com1, ited thermoelastic displacements are  listed  in Table 
9 and plotted on Figure   12. 

IX.     DISCUSSION 

1.      NUMERICAL EXAMPLES 

(a)    First Example  - The thermal stresses and displacements that are 
presented in Tables  1,  2,  and 3 for the bicentric-ogive radome are illustrated 
in Figures 6 and 7.    They were computed with v = 0.244 and E = 16,400,000 
psi as mean values  for Pyroceram 9606 as described  in Appendix A-4 and 
Reference 1.19].    Also,  the straight-line spanwise  temperature distributions 
given by equations   (45)  and  (46) were employed  in the computations.    Thickness 
distributions  found  in Reference [22] and depicted  in Figure 4 are defined 
by equations   (29)  and   (30). 

20 

I (b)    Displacements - The thermoelastic displacements were computed with 
equations   (27)  and  (28)  for the mainbody and   (43)  and  (44)  for the nosecap. 
The numerical results are tabulated  in Table 3 and  illustrated in Figure  7. ^ 
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Table   1.    Meridian Stress,  0.,  psl   (Figure 6) 

Coordinate Angle,  t.  Decrees 
1 0 30 64019,23"    68'3r56"    73 044,23" 81053,25" 90 

+1.00 -33,580 -32,910 -23,302         -29,-t25 28,615 -25,121 -29,448 

+0.75 -16,927 •16,769 -11,601         -18,304 18,124 -16,123 -19,995 

+  .50 -  6,470 - 6,503 - 2,944         - 9,885 9,903 - 8,695 -11,398 

+  .25 +  3,699 + 3,493 + 5,621         -   1,552 1,762 -   1,338 - 2,860 

0 +11,459 +11,104 +12,038         + 4,639        -t 4,245 + 3,898 + 3,571 

-   .25 +16,704 +16,299 + 16,944         + 9,401        -f 8,924 + 7,971 + 9,009 

-   .50 +19,010 +18,634 +19,713         +12,075        +11,570 +10,098 +12,593 

-   .75 +18,457 +18,239 +20,997         +13,334        4 12,900 +11,075 +15,193 

-1.00 +15.377 +15.465 +21.306         +13,676        4 13,380 

ure  6) 

+11,305 +17,157 

Table  2. loop Stress,  Og,  pSi   (Fig 

Coordinate Anale.  4. Deerees 
1 
c 0 30 64019,23"    68°3r56"    73 "44-2 3" 8r53,25" 90 

+1.00 -33,580 -32,899 -53,818         -30,254 28,901 -25,445 -31,846 

+0.75 -16,927 -16,784 -42,117         -19,022 18,494 -16,397 -23,715 

+  .50 - 6,470 - 6,548 -33,460        -10,905 10,356 - 8,918 -16,441 

+  .35 + 3,695 + 3,411 -24,895         - 2,042 2,298 -   1,509 - 9,227 

0 +11,459 +10,976 -18,479        + 4,268        4 3,627 + 3,779 + 4,122 

-   .25 +16,704 +16,113 -13,572         + 9,153        4 8,225 + 7,905 11 

-   .50 +19,010 +18,372 -10,798        +11,953        +10,790 +10,086 + 2,245 

-1.00 +15.377 +I4^49_ -  9.210         +13.818         +12.441 +11.399 +4.149 

Table 3.    The cmoelastic  Displacements (FiRure i ) 

(Deg-n iin-sec) (in)           (in)       (inxl(?)   (in x Iff) (In x l(f) (in x  lO3) 

0 0               28 ,175      23.6411      0 0 23.6411 

30 0.132      28 ,060      20.4585    -11.6288 +0.1584 23.5319 

64-19- 23 0.238      28 .025        9.8718    -20.9448 -0.1785 23.1540 

66-20- 21 1.188      25 .957        9.4295    -19.3686 +0.8638 21.5247 

68-31- 56 2.138      23 .671        8.6435    -17.8434 1.5136 19.7688 

70-57- 49 3.088      21 .096        7.8290    -16.2209 2.1101 17.8874 

73-44- 23 4.038       18 .110        6.8369    -14.4297 2.5231 15.7669 

75-55- 48 4.685      15 724        6.3032    -13.0757 2.9353 14.2158 

78-31- 17 5.331      12 .871        5.5926    -11.5193 3.1884 12.4018 

81-53- 25 5.978        9 .124        4.7401    - 9.5873 3.3403 10.1601 

90 6.625        0 0                  0 0 0 
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Table 4.    Meridian Stress, o., psi  (Figure 9), 

1 C oordinate Angle,  ♦. Degrees 
c 2  15 30 45 60 U— 90 

+1.00 -33 [FrT -34 .194 -35,075 -36.980 -40.348 --■55 757 - 53,84^ 

+0.75 -18 ,333 -18 775 -20,166 -22,687 -26,600 -32 216 -  39,890 

+ .50 - 8 ,95A - 9 ,369 -10,633 -12.804 -15,958 -20 177 - 25.591 

+ .25 - 58 - 406 -  1,421 - 3.017 - 5,053 - 7 349 -    9.776 

0 + 6 .165 + 5 ,936 + 5,336 + 4,619 + 4,187 + 4 527 +    6.068 

-  .25 + 9 .542 + 9 ,540 + 9,692 +10,452 +12.524 +16 753 + 23,917 

-  .50 + 9 ,454 + 9 ,803 +11,091 +14.026 +19,692 +29 382 + 44,302 

-  .75 + 5 ,697 + 6 ,591 + 9,632 +15,855 +26.844 +A4 479 + 70.516 

-1.00 -  1 ,983 - 257 + 5,446 +16,630 +35.588 +65 ,032 +107,500 

Table  5 .    Hoop St ress, oe. psi (Figure 9). 

1 C oo rd inate Angle,  ♦. Degrees 
c 0 15 30 ^5 ^9 11    . 90 

+I.ÖÖ -33 .578 -34 ,248 -35,324 -36.557 -38.7:12 ~7& ,6B2 -3;.8UÜ 

+0.75 -18 ,333 -18 ,942 -20,705 -23,394 -26.483 -28 ,893 -28,565 

+ .50 - 8 ,954 - 9 ,615 -11,516 -14.382 -17.625 -20 .133 -19.904 

+ .25 - 58 - 749 - 2,723 - 5.650 - 8.882 -11 .277 -10.915 

0 + 6 ,165 + 5,473 + 3.516 +      683 - 2.315 - 4 .315 - 3,513 

-  .25 + 9 ,542 + 8 ,924 + 7,216 + 4,860 + 2.630 + 1 .679 + 3,625 

-  .50 + 9 ,454 + 8 ,987 + 7,755 + 6.267 + 5.354 + 6 ,143 + 9.982 

-  .75 + 5 .697 + 5 ,503 + 5,120 + 5,132 + 6,432 +10 ,076 +17,014 

-1.00 - 1 ,983 -  1 ,741 -       770 + 1.611 + 6,369 +14 ,447 +26.012 

Table 6.    Thertnoelas tic Displacements   (Figure 10). 

(DeR.) ( 
u 

In. x 10») 
w 

(in.  x  1(f) 

ur 
(in.  x 10*) 

0 
(in. x  Id1) 

0 4.798 0 4.798 

15 4.540 -0.431 0.759 4.496 

30 3.806 -  .762 1.243 3.677 

A5 2.722 -  .907 1.283 2.566 

60 1.502 -   .814 0.894 1.456 

75 0.457 -  .483 0.317 0.585 

90 0 0 0 0 
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Fig. 10     DISPLACED POSITION OF A THICK RADOME WALL 
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Table 7. Meridian Stress, o      psi   (Figure  11). 

1 Cooidlnate Angle,  it,  Decrees 
c 0 15 30                 AS                 60                 T, 90 

+1.00 -41,856 -41,197 -39,246 -36,281 -32,959 -24,851 -6,219 

+0.75 -24,882 -24,538 -23,515 -21,997 -20,422 -15,375 -2,514 

+  .50 -13,809 -13,608 -13.011 -12,136 -11,263 - 8,069 +    295 

+  .25 - 2,869 - 2,809 - 2,630 - 2,388 - 2,200 -      848 +3,006 

0 + 5,870 + 5,793 + 5,564 + 5,188 + 4,711 + 4,235 +2,569 

- .25 +12,426 +12,251 +11,732 -»-10,928 -^10,035 + 3,009 +3,0S9 

- .50 +16,489 +16,239 +15,494 -"-14,362 +13,186 + 9,75? +    733 

- .75 +18,388 +18,103 +17,249 +15,978 +14,765 +10,207 -2,657 

-1.00 +18,886 +18,591 +17,705 +16,416 +15,326 + 9,816 -6,727 

Table 8.    Hoop Stress, a    psJ   (Figure   11), 

1 Coordinate Angle,  ♦,  Degrees 
c 0 15                 30                45                60                75 90 

+1.00 -41 ,856 -41,197 -39,270 -36,308 -32,246 -25,066 -28,906 

+0.75 -24 ,882 -24,537 -23.535 -22,035 -19,830 -15,077 -22,150 

+ .50 -13 ,809 -13,607 -13,025 -12,186 -10,792 -  7,253 -16,341 

+  .25 -  2 ,869 - 2,807 - 2,640 - 2,449 -  1,850 +      491 -10,562 

0 + 5 ,870 + 5,795 + 5,558 + 5,115 + 4,938 + 6,102 - 6,901 

-  .25 +12 ,426 +12,254 +11,731 +10,844 +10,137 +10,409 - 4,245 

-   .50 +16 ,489 +16,242 +15,498 +14,266 +13,163 +12,694 - 3,454 

-   .75 +16 ,489 +16,242 +15,^98 +14,266 +13,163 +12,694 - 3,659 

-1.00 +18 ,886 +18,596 +17,719 +16,296 +15,049 +13,845 - 4,511 

Table 9.    Thermoelas tic Displacements   (Figure  12). 

u 
(In. x IG?) (ir 

w 
. x ICf ) 

ur 

(in. x ICP (in. x id3) 

0 . 7.694 0 0 7 .694 

15 +7.539 -0. 107 +1.941 7 .285 

30 +7.078 -   . 209 +3.521 6 .140 

45 +6.314 -   . 245 +4.447 4 .482 

60 +5.485 -   . 278 +4.736 2 .767 

75 +5.105 -1. 714 44.887 1 .487 

90 -1.123 0 -1.123 0 
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SECTION A-A 

Fig. 11     THERMAL STRESS DISTRIBUTION FOR A THIN-WALLED RADOME 
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Fig. 12     DISPLACED POSITION OF A THIN RADOME WALL 
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In all of the tables and figures, negative values denote compressive 
stresses and positive values are tensile stresses. Component u (Figure 8) 
of displacement is positive radially outward along the R-axis, and w is 
positive with increasing \ji. For the rectangular components of displace- 
ment, w2 is positive in the positive direction of the Z-axis, and ur is 
positive in the direction of increasing r which rotates about the Z-axls 
as located by the coordinate angle 6. 

As shown on Figures 6 and 7 the bicentric-ogive radome is fixed at 
the base. Various kinds of radome-missile attachments with regard to 
joint stiffness or flexibility are illustrated in symbolic form on Figure 
8. 

I 
I 

From the numerical results,  it is  seen that the stresses generally 
decrease from the tip to the base of the radome.    The maximum tensile 
hoop stress of 19,010 psi at the tip of the nosecap is less than the 
rtllowable material strength of 35,000 psi.    In the mainbody,  the meridian 
stress along the inner surface of the wall decreased from +21,310 psi at 
64019,23" to +13,680 psi at 68°31,56".    This finding is consistent with 
the  18,000 psi calculated from measured strains between these two interior 
points as referred to in Part VI-2b on strength data. 

(b) Second Example - For the thick-walled hemispherical radome  in 
this example,  the base attachment is shown by Detail "a" of Figure 8, 
and the dimensions  are given in Figures 9 and 10. 

From the numerical results  in Tables 4 and 5,  it is seen that the 
stresses  increase from the tip to the base of the radome while  the converse 
occurred in the previous example.    These stresses are excessive and would 
crack a real radome.    Distributions of these thermal stresses are plotted 
in Figure 9 for comparison only.    And the displaced position of the radome 
wall caused by aerodynamic heating is sketched in Figure  10. 

(c) Third Example - The base connection is represented by Detail "b" 
of Figure 8 for the thin-walled hemispherical radome  in this example, and 
the dimensions are shown in Figures  11 and 12.    Also,  the radome wall has 
the same  thickness and its central-surface radius  is the same as the base 
radius of the bicentric-ogive radome in the first example. 

From the tabulated numerical reEults  (Tables 7 and 8 and Figure 11), 
one observes that the maximum stresses occur at the tip.    There  is  18,890 
psi tension along the inner surface and 41,860 psi compression along the 
outer surface of 'Jie wall at the tip of the radome.    Meridian tensile 
stress maxima decrease from tip to base along the span and fall inside 
the wall beyond 45°, while  the compressive maxima remain along  the wall's 
outer surface and decrease along  the span to 6220 psi at the base. 

Again,  as  shown here  in Figure  12,  the wall expands outward over most 
of the length, but is induced by the spanwise heating to move inward at 
the base.    With the stiff base attachments employed in examples one 
(Figure 7) and two  (Figure 10),   such inward movement is suppressed. 
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2. SUMMARY 

(a) General Remarks  -  With fixed ends,  examples  one and two,  displace- 
ment and wall-slope change are prevented at  the base of a radome;  i.e.,  the 
boundary conditions  imposed by the radome-missile  joint are:     V^,  = u^, = w^  = 
0, which represent conditions  that are more  severe  than occur in actual 
structures.    A missile body expands and contracts with changing temperatures, 
so ufc would not vanish. 

The hicentric-ogive radome wall material was  found to sustain the thermal 
stresses by both test and  theory.    Of the two hemispherical radomes  that 
were analyzed for purposes of comparison,   the thick-walled radome  is over- 
stressed, but stresses  in the thin-walled hemisphere lie within safe  limits. 

(b) Recommendations  -  It appears  that the methods of analysis of 
thermal stresses  and displacements  in ogival radomes under aerodynamic 
heating that are presented herein are satisfactory for numerical evaluations. 
Further study of the  problem is needed, however,   to provide answers  to un- 
resolved questions. 

It is therefore recommended that the  investigations be continued to 
obtain information on nose temperatures,  stress maxima, and the effect of 
different kinds  of  radome-missile connections. 

X.    CONCLUSIONS 

Based on the  reported investigations,   it is concluded that: 

(1) The methods of analysis are satisfactory for the cai   alation of thermal 
stress and displacement in ogival radomes. 

(2) Additional  information is required on temperature distributions. 

(3) Further studies are necessary on nosecap behavior and thermal   stress 
maxima. 

(4) Further  investigation of radome-missile  joint  effects  is desirable. 

APPENDIX A:     THEORY 

1.       EQUILIBRIUM REQUIREMENTS 

(a)    Stress  Equations of Equilibrium -  The volume element  in Figure   1 
is oriented with respect to meridian lines   (located from the center of 
curvature by radius R) and the angle lit, which measures the  inclination of 
R.    The third coordinate is 9, which is the rotational angle about the 
geometric Z-axis  for the ogival body of revolution.    They are often referred 
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to as the natural ogive coordinates.    Orthogonal coordinate systems  (R, 6,  ty) 
and  (r,  9,  z) are shown in Figure  la. 

For axially symmetric bodies and heat distributions,   the partial 
differential equations of equilibrium for a volume element follow immediately. 

ö(rRa )      a(rT    ) 

öy ' oijr ra,  + Ra.sin \k. 
a(rR2T   ,)      ä(rRa,) 

ay 
_ii 

ZJ^- Ä ^^-08 * (47) 

Equations   (47)  are derived  from E F    = 0 and E FJ, = 0,   respectively.    Owing  to 
geometrical and  thermal symmetry,   there  are no changes  in the  9 direction 
and T  -  and T  „ are zero as well as Z F» = 0. 

(b) Stress and Moment Resultants - When equations (47) are integrated 
over the wall thickness, the equations of equilibrium are obtainsd in terms 
of the stress and moment resultants of  integrals   (6),   (8), and   (10). 

d<rcV 
"  *    =  (r N,  + R N0sin ^)-(rRp      +rRp     ) 

d\y c \|i        c 9        T/       ''a a ay        s  srsy 
(48) 

d(r N ) 
?7 ä    = (R NQcos \|r-rQ,)-(rRp.+rRp.) d\|) c 9        T c y a a a\|i        s  s s\|i 

(49) 

d(r M.) c y = R (M.cos  \(( + rQ,)+c(rRpl-rRpl) 
c    9        T cxi|( s s stjt        a a a\|i (50) 

In the  foregoing relations,  p      and p  ,   are the radial and tangential components 
of pressure at the outer surface of the radome; and p      and Pgj,,  at the inner 

:herm£l-stress problem. surface.    These pressures are equated to zero in a thei 

For the investigation of temperature stresses,   therefore,   the resultant 
stress and moment conditions that ensure equilibrium are expressed as follows. 

%= Vot h N
e = 

d(r Q,/R sin fc) c_j    c T 

' "        d^ 

d(r M ) 

in/-= Mecos ^ 4 r^ c^ (51) 

These expressions hold for both thick and thin-walled ogive shells from the 
inner apex to attachment points  at  the missile body,  but  not within the 
attachment region owing to restraints  set up by the  connections.     In any case. 
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however,   the  body-joint problem requires  further analysis and  can often be 
treated by  reintroducing  the  surface  pressures  as derived  in equations   (48) 
to  (50),   inclusive. 

2.       STRAIN EXPRESSIONS 

(a)    Thermal Strain - For Pyroceram 9606,   the thermal-strain function 
(e  ) was developed  from test data  in Reference  [19].    From  these  results 
together with  temperature distributions   reported  in Reference  [22]  for 
wind  tunnel   testing of a Von Karman radome,   the  function is  defined as 
follows. 

.6 et  =  (-241.2 + 3.445T) x  10"   ,     70° < T < 400oF (52) 

=  (-119.1 + 2.958T)  x  10-6,  200° < T ^ 600oF (53) 

=  (+190.3 + 2.221T) x  lO"6,   300° < T <  1400oF (54) 

Temperature   (T)   is given by equations   (29)  to   (31),   inclusive. 

Inspection of  the  distribution of  temperature defined  throughout  the  radome 
by these equations  and Figure  3  revealed  that  equation  (52)  satisfactorily 
describes  the  temperature  in the  inside  half of the wall   (-1 ^ x ^  0)  along 
tha entire  span;  equation (53)  defines  T over  the full span  in  the  quarter 
thickness above   the wall centerline   (0 ^ x ^ +0.5);  and   (54)   serves   the  same 
purpose  in the  outer quarter of the wall  thickness  (+0.5 ^ x ^ +1).     This 
arrangement  expedites  the calculation of  temperature  functions,   integrals  (7) 
and   (11),  and  the  stress equation  (2). 

The  strains  computed with equation  (52)  agree with the measured  data, 
Reference [19],  within -1 to +3 percent.    Those calculated  from equation  (53) 
correspond  to  the measurements within  five percent; and  the  ones  found with 
(54)  agree within seven percent  in the   low part of the  temperature  range, which 
is seldom used,  and deviations  in the  upper half of the  range   lie between 
approximately  -2  and +4 percent. 

(b)    Actual  Strain - Components  of  strain for elastic behavior were 
thoroughly discussed by Love  [l]  and  other authors [2],   [3J,   [4],  and  [5]. 
We have 

% = (V " VV11'       ee = (eec " yxe)rc/r (55) 

1 dw e       = —  I   u + — 
^       Rc   j d^ je       r 

e«     =— |usini|i+w cos  § (56) 
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v = — du ^ 1_ dV 
Xi|i ^ R    d^   ' 

V cos  ty 
r 

(57) 

where equations  (55) define  the normal-strain components at any point in the 
wall  of  the  radome,  equations   (56) give  these  strains at  the central surface, 
and  (57) shows the change   (V) of the slope of the wall together with curvature 
changes.    General solutions  for  the  latter functions appear as equations   (22); 
and  particular solutions,   as equations  (25) and   (26). 

(c)     Elastic Strain - As the  result of  thermal  strain due  to temperature 
change plus elastic strain produced by constraints  against thermal expansion 
or contraction, we have 

er% ee = ee (58) 

where ex,  e^ are  the components  of elastic strain in the wall of the heated 
radome.     And the other terms  are  given by equations   (55)  to  (57),  inclusive. 

3.       MECHANICAL PROPERTIES 

(a)    Young's Modulus   -  Dependence  on temperature  of  the mechanical 
properties  of Pyroceram 9606 was  examined in Reference [19].     In the pre- 
sent numerical examples,   an average value of E was  employed and  is written 
below. 

E = E      =  16,400,000 psi; 70°  ^ T ^  1400oF 
av 

(59) 

Values  of  E over the above  temperature  range,  which  includes  all temperatures 
in the examples, agree within four percent of the quoted average. 

(b)     Poisson's  Ratio  - As  pointed out  in Reference  [19],  Poisson's  ratio 
(v)   is  nearly constant  for  the  radoine-wall material.     For  the specified 
temperature  range,   its mean value   is 

v = v       = 0.244, 70° ^ T <;  1400oF 
av 

(60) 

and the largest differences between tnis mean value and the test data amount 
to ±2.5 percent. 

4.  STRESS STRAIN RELATIONS 
r 

(a)    Hooke's Law -  The  previously discussed wall stresses and strains 
are  related by means  of  Hooke's   law;  e.g., 

i5 
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Ee,   =0    - voQ, Eeß = a0 - va, 
\!i        i(i a 9 6 \|i (61) 

from which  ths  stresses are customarily expressed in  the  following manner. 

a,   = E'Ce,   + ve0),        a0  = E'Cve,   + eö),        E'   = E/(l - v2) :e e ^ ■e; (62) 

As presented in the next two articles, the preceding relationships let us 
express the central-surface strains and curvature changes in terms of the 
stress and moment resultants. 

(b)     Normal-Stress Resultants  - When E and v are  represented  by their 
constant mean values,  equations   (59) and   (60)  respectively,   the   integrals 
(5),   (6),  and  (7) together with equations   (55) to (58) and   (62)   lead to 
the following expressions for Nj^   and Ng . 

* = Elh(e     + ve0 ),        «2= E'h(vei    + e    ) 1 ■ifc 0c   ' * \(ic        oc 
(63) 

Second and higher order effects are neglected in this calculation of ^   and 
N    in terms of the central-surface strain components. 

(c)     Bending Moments  -  Equations   (9),   (10),  and   (11)  are used with  (55) 
to   (61),   inclusive, to obtain 

V   -D(x^ + vxe), M^  -D(v^+X6) (64) 

wherein  the second-order effects  are again neglected,  D is  the wall flexural 
stiffness  factor stated by equation  (21),  and the curvature-change components 
are given by equations  (22)  and   (57). 

APPENDIX B;    TEMPERATURE FUNCTIONS 

1.       NORMAL-STRESS TEMPERATURE FUNCTIONS 

Functions  that depend on the  temperature distribution and have  the 
dimensions of  a ncrmal-stress  resultant  are defined by equations   (7)  and 
can be  expressed  in the forms written below. 

Nte = K
D
+
 Ki008 *>      % " Nte + (K2+ ^cos *)Rc/rc (65) 
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When equations  (2),   (29),   (30),   (31),   (52),   (53),   (54),   (59), and   (60) are 
substituted into  (7) and  integrated,  the K^ are  found to have the following 
values. 

1^= 4.648Eh/(l-v) x 10* ,        %= 6.792Eh/(l-v) x Iff (66) 

Kg" 4.393Eh/(l-v) x  107 , 1^= 3.420Eh/(l-v) x 107 (67) 

The radii rc and Rc that occur in equation (65) are illustrated in Figure 1 
and defined by equations shown on the figure. They are evaluated in Reference 
[25]. 

2.       BENDING-MOMENT TEMPERATURE FUNCTIONS 

Functions  that depend  on the  temperatur..  distribution and have  the 
dimensions  of a bending-moment  resultant are  defined by equations   (11)  and 
can be expressed  in the   forms written below. 

M
te 

= Jo+ Jicos ^      % = M
te 

+ <J2+ J3cos *>Rc/rc (68) 

When equations (2), (29), (30), (31), (52), (53), (54), (5^, and (60) are 
substituted into (11) and integrated, the J^ are found to have the following 
values. 

J0= 1.269Eh
2/(l-v) x 10* ,    Jj» 0.989Eh2/(l-v) x 10*        (69) 

Jp= 1.704Eh
s/(l-v) x 107 ,    0,= 2.195Eh2/a-v) x 107        (70) 

One can see  that the K.   have  the dimensions of  pounds per  inch  (ppi);  and  the 
J.,   of inch-pounds  per  inch   (ippi).    Again the  above are evaluated  in Reference 
[h]. 

APPENDIX C:  DIFFERENTIAL EQUATIONS FOR SHEAR AND SLOPE FUNCTIONS 

1.  AUXILIARY SHEAR FUNCTION 

To find solutions for the total shear (QA), equation (8), the auxiliary 
shear function (q) is introduced such that 

J7 
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q = r Q, /R    sin \lt. N,   = n        c  f    c T \|i 

R q cos  ty 
(71) 

and,  by solving equations   (63),  the  central-surface  normal strains  are  obtained 
in terms of q. 

From equations  (56)  and   (57),   V is   found  in terms  of the  central-surface 
normal strains. 

V = 
,    d(r e.  ) 

esc  \lt c  9c 
R„    '    ^    d^ e,   cot ilr 

\(|C T (7?.) 

And with equations   (5),   (63),   and   (71)  put  into  (72),   the following ordinary 
differential equation is  obtained 

(1^+ v)q  = EhV +  (^   -  vNte)cot  ^r  - — 

The operator L2   is defined  as  follows: 

esc  ■j; d 
d\(t 

r
c<Nte " vNt,> (73) 

r esc  ik   ,2 , qR cos  A d~q   ,        k ,   dq c " 
-r-f- + cot i -fr - —r — d^ T d^i       r tan ^r L2q=-V— 4-# + (74) 

and, in general, the solutions of equation (73) are obtained as infinite 
series for q and V, which are exemplified by equations (12) and obtained 
in Reference [26], 

2.       WALL-SLOPE CHANGE 

Relationships  similar  to  the  foregoing are  derived  for V by substitution 
of equations   (11),   (22),  and   (23)   into  (51).    The  result  is 

M  .cot f 
(L2- v)(EhV)  =  (B4+ V2)    -^r q 

,     d(r M    ) esc  ill c  till 
R2 d^ 

(75) 

where L    is given by equation  (74),  q by  (71),  and  «"he  temperature moments 
by   (11)  and   (68),    The wall-bending  parameter  (6)   is  calculated with 

0*= -v2+ 12(l-v2)(Rc/h)2 (76) 
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which is developed  from the  expression Ehl^/D, where D is given by equation 
(21).    The general  solutions of equation  (75) are given in Reference [26]. 

3.       SPECIFIC RESULTS 

When specific  temperature functions defined by equations  (65) and (68) 
are put into equations   (73)  and  (75),  the  results are as follows. 

(L2+ v)(q + Kj)  = EhV + (l-v)K1r  /Rc + KgR /r tan iji (77) 

(L2- v)(EhV)  =  (p4+ v2)(J1rc/R^ + J3/Rc  - q) (78) 

Particular solutions of  (77) and  (78) are necessitated by the presence of 
constants Ki,  J^ and general solutions when these constants are absent. 
These solutions  are developed in Reference  [24]. 

APPENDIX D:    SOLUTION OF EQUATIONS 

1.      MAINBODY 

(a)    General Solutions - To find  the general solutions of equations  (77) 
and  (78),  one observes  that 

(L4+ 04)q    = 0, (L4+ SMV = 0                                              (79) 

where subscript "g" denotes that the solutions are general. They are found 
as 

4 4 

r  v—^ r r~" 
q = -^  )  B f (■;.), v = r5- X   B'f 0;.)           (80) g  R   /   m m v ' g  R m m H 

c  Z—. c -:— 
m=l m=l 

where series  f     (m = 1, 2,  3, 4) are given by equations  (12) and   (16). 

The series coefficients  (amn) are computed from recurrence  formulas as 
explained in Reference [26], and constants B    and B'  are related as follows, m m 
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\=  (vB^ ß^B^/Eh, B^  (vBg-  rB^/Eh (81) 

And  similar relations hold  for m =  3 and 4. 

(b)     Particular Solutions - With reference  to equations   (77) and  (78), 
only the  terms  involving  rc  as  the  only variable  can be  solved  in closed  form. 
These forms are asssociated with Kj   and Jj^ .    We have 

(L2+ v)q    = EhV,, + (l-v)K1r  /R (82) 
p P ■L   c    c 

(L2- v)(EhVp)  =   (e4+ v2)^^/^2 -  qp) S  (83) 

and  the particular solutions are written below. 

q    = B-r /R  , V    = -&r /R (84) ^p6cc' p^cc 

Jj       (1-^)^+ RcK1) (l-v)(v2+ ß4)^^ R^) 

^   = F ' (1+ß4 )R ' ^   = (l+ß4)R Eh (85) 

c c c 

These solutions, equations (84), are included in equations (23) and (25). 
For other terms (the ones that involve Kg, Kj , and J3 ), however, infinite 
expansions are required to satisfy the differential equations. In the 
current examples, approximation functions are used that meet the require- 
ments with errors of one-half percent or less. The approximate solutions 
are discussed  in Reference  [24]. 

APPENDIX JNDARY CONDITIONS 

!_. GENERAL REQUIREMENTS 

In general,  one considers  the   requirements  at  the  juncture of  two 
arbitrary segments  of  the mainbody,   such as MB1 and MB2 with  the junction 
at  iji =  73044,23" in the  first numerical example.    Eight  functions are 
involved:     displacements  u,  w and  slope  change V;  stress  resultants Qx, 
NJ,,  Ny;  and moments Mx,  MQ .    At any  juncture   (iji^) where  there   is wall 
material and geometric continuity,   all eight  functional  requirements  can 
be met by the  following  five  equations. 
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w(fi+)  = «(^-1), V^^)  = VCtji.-) (86) 

q^^)   = qC^-D, «9^!+)   = Ne^i-) (87) 

Vn-0 ^/M (88) 

From these,  one constant v^ in wC^H-)  is determined directly and four relations 
for constants of integration ^ are obtained.    The equations and evaluation of 
the constants are discussed in Reference [26]. 

2.      RADOME BASE 

At the base of a radome,  three equations are  found according to the type 
of attachment as  illustrated in Figure 8.    In all cases, axial relative dis- 
placement between missile and radome vanishes,  or 

w(90p) = w.   = 0 (89) 

and the constant w.   in w,   is computed directly.     Then for a fixed base, we 
have 

u(90o) = v^ = 0, V(90o)  = Vb = 0 (90) 

and for a free base, the requirements are stated below. 

q(9(n = qb = 0,      M^(90
o) = M^ = 0 (91) 

With a hinged base,  one uses 

u,  = 0, M,,    = 0 (92) 

and with a bearing-supported base 

qu = 0. vb = o (93) 

where the relationship between q and Q    is given in equation  (71) 
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3.       NOSECAP-MAINBODY JUNCTION 

At  ^= 64019l23",  which  locates  the  interface between the nosecap and 
MB1   (Figure  2)   in the bicentric-ogive radome  of  the  first example,   the 
requirements  for strain continuity lead  to the  following expressions. 

XgO/^) = xe(v).       ^x1((ti+) = \x^i-) (95) 

V^1-0  + KcX^m)   '= 0' V^  + ^Xe(^-)  = 0 (96) 

Equations  (94)  and   (96)  produce  satisfaction of 

V^+) = V*1"0,    N2(^+) = ^^ (97) 

which  also meet similar requirements  imposed on N^, and  u,  since  the  constant 
w0   in  ♦■.he nosecap formula for w  is  computed with the  next equation. 

w(*1+)  = w«—) (98) 

The first of equations (95) satisfies the requirement on V, equation (86), 
and t^e second one fulfills a requirement that is similar to equation (88). 

APPENDIX F:  THERMOELASTIC DISPLACEMENTS 

1.  WALL EXTENSION 

From equations (56) for the mainbody, we have 
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c  9c      ^ sin jj d(w esc  \li)  „ _2 ^ +    c ,, , 
5i|ic " R sin if "   R d\|i Eh RcEh sin \|i 

NA.,   " vNtfi      r  (vN   ,   - N 0) 
_ _t| to cv    t\li        t^l 

Eh R Eh sin ill 
c Y 

(r    + vR sin * )   , 
+ TR sin i, + VT ) a_£ot_l c c 1__ d^ + (R sin ^i + vrc) R Eh sin d 

C c ^ ^ 

(99) 

which is  integrated to secure equation (27).    The integration constant in 
equation (27)  is w^, and functions w    and wt are shown below. 

w    = W sin \lf 
q 

(r    + vR sin \|()q 

Eh sin \|i 
(100) 

sin jj 
Wt "    Eh 

(N 0-vN   ,)r    esc  4 + (vN Ö-N   ,)R  |    ^   . 
to       tr   c ^       ^    to    tiji     c     sin  if 

Cioi) 

s 

W ~ Eh j 

q(2r    + R sin \li)cos \|i d\|i 

r    sir? if 
(102) 

When the normal-stress temperature functions  in equation (101) are given by 
equations   (65),  w    becomes 

wt = ^^ (^   cos  ^i + K, ) + -^  (l^cos ^ + K, ) 
Eh 

R    sin to 
c 

+ Eh  sin ^c    ^(A.+ ^sec^)^/^^ 

A, s -tn (esc if  - cot if), Ag« -tn 
1 + cos(*Hi  )       c 

r  /R 
L c    c 

,    A3= -tn(R /r esc  ij) 

(103) 

(104) 

where  the \   ace   logarithmic  expressions as  indicated  above.    The   trigonometric 
sine of  the  central-surface apex  is computed with 

sin ill    = H/R  , Tc c 
H = R    -  r, 

c        be 
(105) 
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and  sec \|i    can then be  readily obtained.     Values  of  the KJ   are  calculated 
from equations   (66)  and   (67).    Functions W,   integral  (102*,  can be  computed 
with infinite  series,  but  it is usually more  convenient to find W by finite 
summation. 

2.       RADIAL DISPLACEMENT 

To find u for  the mainbody, wc  again use  the  second of equations   (56) 
together with equation  (27)  for w.    When fig     is  obtained  from equation  (63),  the 
following result is  found. 

u =  (N2- vNj^ )r  /Eh sin \(i  - w cot  ty (106) 

Equation  (106)  can be  used  throughout  the  ogival mainbody since  i(i > 0. 

APPENDIX G:     NOSECAP  EXPRESSIONS 

1.      TEMPERATURE FUNCTIONS 

(a)    Normal-Stress Temperature Functions - When one uses outer-surface 
temperature distributions that vary with cos ^ in the manner of equations   (45) 
and  (46)  for the nosecap,   the normal-stress-resultant temperature function, 
equation (35),  can be expressed as follows. 

Nt = I% = Nte = ^+Ki,cos * (107) 

For the nosecap on the bicentric-ogive  radome,   surface  temperatures were 
given by equation  (46),  and 

I^= -0,0612Eh/(l-v)  x  1Ö1 ,       1^=  13.873Eh/(l-v) x  lÖ4 (K 

which were  employed  in  the  first example. 

For the hemispherical  radomes,   the  surface  temperatures were  given by 
equation  (45),  and 

1^= 5.842Eh/(l-v) x lO1 ,        1^= 7.772Eh/(l-v) x 10* (109) 

which were used  in the second and  third examples. 

44 



':""■':;.'!".  M.iaKgwmmmmrnmaKmwwmmmmBmmBmmKHBmt^-'F**-'-:-'-'****^- -" 

I 
THI JOHN« HOPKINS UNIVIR1ITY j 

APPLIED PHYSICS LABORATORY 
• ILVIII   »PBINO     MARYLAND 

(b)    Bendlng-Moment Temperature Functions - Since  temperature functions 
for the bending-moment  resultant have the same general form as equation (107), 
one can use 

Mt = Mt* " Mte ' Jo + Ji C08 * (110) 

and,  for the nosecap with surface  temperatures from equation (46),  the con- 
stants are written below. 

Jo'  = 0.5195Eh3/(l-v) x  10* ,      J^  = 2.830Eh2/(1-v) x 1Ö1 (111) 

For the hemispherical radomes,   the surface temperatures were given by 
equation  (45),  and 

JJ   = 1.732Eh2/(l-v) x  101 ,        J^   =  1.585Eh2/(l-v)  x  10* (112) 

which were  employed  in the second  and third numerical examples. 

2.       DIFFERENTIAL EQUATIONS FOR SHEAR AND SLOPE FUNCTIONS 

(a)    Total Shear - For hemispherical segments,  such as  the nosecap,  equation 
(73)  reduces  to 

dN 
(L2+ v)Q    = EhV -   (1-v) —^ (113) 

and equation (74) becomes 

L2Q = d^+ COt ^ d^ " Q COt^ (11^) 

which  lead  to general  solutions of  the kind  indicated by equations  (39)  and 
(40)  that  are more  fully described  in Reference  [27]. 

(b)    Wall-Slope Change  - For  the nosecap,  equation  (75)  reduces  to 

P ,     dM    " 
(L2- v)(Ehv)   = -(B*   +v2)    Q^ +^-dt 

(115) 

L J 

where L~ is given by equation (114), Qj, by (8) and the temperature moment by 
(38) and (110). The general solutions are discussed in Reference [27]. 
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(c) Specific Results - When the specific temperature functions defined 
by equations (107) and (110) are put into equations (113) and (115), the 
results are as follows. 

(L2+ v) Q = EhV + (l-v)!^' sin f 

Jj'sin \)i 

(L2- v)(EhV) = (0^+ v2) 
% 

- Q t 

(116) 

(117) 

Particular solutions of these equations are necessitated by the presence of 
constants Kj* and J^ and general solutions when these constants are absent. 

3.  SOLUTION OF EQUATIONS 

(a) General Solutions 
(117), one observes that 

- To find general solutions of equations (116) and 

(L4+ f£) Q = 0,   (L4+ ß*) V = 0 (118) 

where subscript "g" denotes that the solutions are general.  They are found to 
be 

Q    =sin4     )     Aa,        V    =sin\li     )     A'a g T/min g Y/mm (119) 

m=l m=l 

where the  infinite  series  (s  )  are  indicated by the  first of equations   (39), 
and  they are developed  in Reference [27]. 

(b)    Particular Solutions  - The  terms  associated with sin iji  in equations 
(116)  and  (117)   possess closed-form solutions.     They are 

Qp = V1" ^ V    = -^sin ^ (120) 

where  constants  iL ,  AQ depend  on K^ ,  J^  as  shown bei ow. 

Ao = Rj - 

J'        (l-v2)(J1'+RoK1
,) 

(1 + ß4)R v        Mo/ o 

(l-v)(v2+ $)W+ R K') 
A; = (1 + B0XEh W 

Numerical values   of  the  foregoing  constants were obtained with the  aid  of equations 
(108),   (109),   (111),  and  (112)  and used  in the three example problems. 
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4.       BOUNDARY CONDITIONS 

(a) Nosecap Requirements  - The nosecap boundary conditions  at  its 
juncture with the mainbody are discussed  in Appendix E-3  in conjunction with 
equations   (94)  to   (98),   inclusive.    However,  owing  to errors  in the original 
computer program not all of  these conditions were met  in the first numerical 
example.     The numerical results  reported herein satisfy  requit.nfnts  that 
meridian fiber stresses at the  inner and outer surfaces of the wall are 
equal between mainbody and  nosecap, but there  are discontinuities  in some 
of  the   terms  that appear in equations   (94)  to   (97),   inclusive.     Equation  (98) 
was exactly fulfilled however. 

In  consequence,   the nosecap  stresses must be  regarded  as approximate 
rather  than precise  results.    Furthermore,  they are believed to be  reasonably 
good approximations. 

(b) Base Connection Requirements  - The  base-connection boundary conditions 
given by equations   (89)  to   (93) were used iu comparison studies with hemi- 
spherical  radomes.    They were  completely satisfied  in these  studies.     In 
the  second example  in  this  report,   conditions   (90) were   imposed;  and  in 
the  third example,  conditions   (91). 

5. DISPLAC 

(a) 
lustrated  m 

iision -  Extension  (w)  of  the nosecap wall, which is 
(iure  8,   is  computed from equation  (56) with r    = R    sin ^ 

i|c '6c 
= sin is d(w esc  ■ii)     (1 + v)   ,N v 

R dili Eh v i"    V 

iL+Jtl sin . d(Q esc ^ 
Eh *        di)i 

(122) 

"rom which the  following expression is  obtained. 

w = w    sin \|i  -  (i+v)R Q/Eh (123) 

And w     is  an arbitrary constant. 

(b)    Radial Displacement  - Again using  the central-surface hoop strain and 
equations  (56)  and  (63),   one has 

€.     =  (u + w cot  \k)/R    =  (N - VN, )/Eh 
oc o « •L (124) 
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which is  solved  to obtain the following expression for u. 

u =  (Ns- VN1)R /Eh - w cot iji (125) 

Since cot \|i becomes infinite at i)i = 0,   it is desirable to substitute equation 
(123)  into  (125)  for numerical work.    In this way, we arrive at the next 
relationship for the radial displacement  (u). 

R 
o 

u =ih (H [a-  VN,) +  (1 + V) N^ - w    cos \|i (126) o 

The preceding equation for u was  reported earlier, equation (44), as being the 
most suitable  one for the computer program. 
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